
LIF Project Specification

Simon Kaufmann
sikaufma@ucsd.edu

Owen Jow
owen@eng.ucsd.edu

April 2020

1 Overview

Radio communication plays an important role in modern day life and shapes the way
people are able to communicate with each other through mobile devices. A growing
number of communication services (like the 5G mobile phone network) need to share
a very limited frequency spectrum. The ability to share the same frequency range for
different services could therefore be useful in the future, but requires being able to classify
and recognise received radio signals by the service they belong to. In this project, we
aim to implement an efficient and low-power computing system to classify radio signals.
Our method will be based on a learning system inspired by biological neurons and will
be evaluated using RadioML, a publicly available dataset of radio signals.

2 Approach

Background

Traditional radio communication devices consist of dedicated hardware units for various
signal processing tasks (e.g. amplifiers, filters, modulator). Cheaper and more powerful
modern digital computing hardware enables us to perform many of these tasks in software
instead of hardware.

This approach has the advantage that besides performing traditional signal processing
tasks, the computer is able to assist with additional tasks like classification of the re-
ceived radio signal (modulation classification). Such classification can for example be
useful in non-cooperative communication settings (e.g. military units trying to decode
communication of hostile forces) or generally for detecting the type of service transmitted
at specific frequencies.

Machine learning has proved to be an effective approach for performing complex classifi-
cation tasks. As described in the following section, an implementation for this modula-
tion classification task already exists using a traditional convolutional network. For this

1



project, we will examine the use of a novel type of neural network, the so-called spiking
neural network (SNN), which is inspired by biological neuronal processes in the brains
of animals and humans.

Previous Work

In one previous effort ([1]), our project lead and several other collaborators performed
a study of the efficacy and complexity of several deep learning models as applied to the
RadioML automatic modulation classification task. In that project, the best performing
models were convolutional networks (ResNet and VGG) with large numbers of param-
eters and operations. The networks were basically architected to perform a number of
convolutions on the input radio signals before reducing the activations to per-class prob-
abilities using a softmax layer. We plan to use this project as a baseline with which we
can compare our own results.

Since spiking neural networks are much less developed than traditional neural networks,
it is unlikely that our less complex model will perform up to par with the existing
ResNet and VGG approaches. However, this is okay because our motivation for using
SNNs comes from the fact that the associated computational complexity and power
requirements can be less than those of traditional CNN-based counterparts. Given the
highly real-time nature of the problem and the need for limited memory and power
consumption on an FPGA, these aspects of the solution are more important to consider
than they would usually be. For example, the ResNet, while it performed the best of
all models, could not be implemented on an FPGA with high throughput because it
was too large and required too much on-chip memory to store intermediate activations.
Thus we consider it an important component of our project to quantify the performance
of our models relative to their parameter counts and computational requirements.

Figure 1: These are the ResNet and VGG model sizes and accuracies from the project
lead’s previous paper ([1]). They were the best-performing and also largest
models in the project. We will be aiming to get as close as possible to these
accuracies with less computationally-expensive models and reduced precision.

SNN with Deep Continuous Local Learning

For our approach, we plan to follow the spiking neural network method called “Deep
Continuous Local Learning” (DECOLLE) that is outlined in [2]. It provides a novel

2



way to train SNNs, which are event or spike-based networks that are naturally equipped
to process temporal data (which can be represented as spikes over time) and that are
theoretically more powerful than artificial neural networks because of the differences in
their neuron design. The problem with SNNs is that spikes over time are not differen-
tiable, so they are difficult to train with the standard optimization methods of today
(e.g. stochastic gradient descent) which require the ability to compute gradients of the
loss function with respect to every parameter in the network.

DECOLLE solves that problem by using auxiliary classifiers on a per-layer basis to
provide local classification signals for each linear integrate & fire (LIF) neuron level in
the SNN. LIF neurons are modeled after biological neurons and are represented by a
number of state variables such as membrane potential and resetting state.

Figure 2: An illustration of the DECOLLE feedforward SNN architecture over two
timesteps. Each blue block represents a state variable, each column repre-
sents a timestep, and the orange diamonds are auxiliary losses. The arrows
represent the flow of information (orange arrows represent the flow of gradi-
ents). As you can see, information from one time step is fed into the next time
step, which helps the network model the temporal aspect of the data.

Project Parts

We intend to build off of the code provided by the authors of the DECOLLE paper,
extending their work according to the following sequence of steps:

• Implementing a larger spiking neural network for RadioML based on the dcll li-
brary, which is modeled after the VGG network architecture used in [1].

• Optimizing this network for RadioML classification accuracy by tuning various

3



hyperparameters like learning rate, momentum, etc.

• Extending the Brevitas quantization library to support spiking neural networks

• Training a quantized version of the RadioML SNN and optimizing it for model
size, memory bandwidth, and speed while maintaining as high of an accuracy as
possible

Further Extensions

Eventually, the model created for this project should be able to run on dedicated hard-
ware (e.g. to be used in Sofware Defined Radios) which means that similarly to the
VGG used in Previous Work, an FPGA implementation will be desirable.

FPGAs are customizable computer chips that can be programmed for specific purposes
using a hardware description language. Compared to processors where the hardware
structure is fixed and only software can be modified, an FPGA allows the programmer
to adapt the configuration and wiring of the entire computer chip to the needs of the
project. Due to this property, FPGAs deviate from the standard sequential processor
model and can perform many separate operations in parallel which makes FPGAs well
suited for the implementation of neural networks.

There is some uncertainty in this project around how easy it will be to adapt the Brevitas
library for spiking neural networks. If it turns out that no considerable progress is made
in this regard, we may revise the schedule and focus on the FPGA implementation of
the RadioML SNN instead of its quantization.

3 Project Objectives

Our overall objective is to train an SNN model which approximates previous VGG/ResNet
accuracies on RadioML modulation classification and train a quantized version of the
same network to optimize for computing power and memory. We plan to work toward
our large-scale goal by producing the following results:

• An SNN network for RadioML trained using DECOLLE:
Based on the dcll Python library provided with [2], we plan to create a model
trained using the RadioML dataset for modulation classification. This model will
be evaluated on accuracy.

• A quantized version of the SNN network for RadioML:
In order to prepare the SNN for effective and fast computation, we intend to create
a quantized version of the neural network using the Python library Brevitas. This
network will be evaluated on its required space, computational efficiency (timing)
and accuracy.

4



For more details about the milestones, deliverables, and schedule, see section 7.

4 Feasibility and Risks

Performance

In one sense, there is a risk that the DECOLLE spiking neural network will not perform
well on the RadioML dataset, as SNNs are difficult to train and do not currently produce
results on par with traditional deep learning schemes. We would likely need to develop
or utilize new SNN-based optimization methods in order to resolve this; however, that
is not the focus of this project. Here we are primarily interested in seeing how well we
can do with the current training methods, and potentially quantifying the performance
gains (in terms of compute and memory) of DECOLLE over VGG, with and without
quantization.

Training Time / Hyperparameter Tuning

Another difficulty and contributor to risk stems from the fact that deep learning methods
require a significant amount of training time, meaning there is a long turnaround before
we are able to see a result – and the result might not even be good or valid (due to
implementation error, poorly-chosen hyperparameters, or the limitations of the method).
Optimizing hyperparameters to get good training results may require many iterations
of the same training process which can potentially delay project progress. We will try
to alleviate this problem by making healthy use of the GPU cluster, where we have the
ability to run multiple experiments in parallel for faster development, and by allocating
sufficient time for the tedious process of hyperparameter tuning in the schedule.

5 Group Management

We plan to make decisions by consensus (taking into account the advice of our project
lead) and to communicate via Slack channel, making Skype calls as necessary. We will
report weekly progress to our project lead via Slack.

Progress will be monitored using the milestone schedule. If we experience significant
delays of our milestones due to problems encountered, we may revise the schedule and
focus our efforts on creating an optimized RadioML SNN (without quantization). In
case the Brevitas implementation causes problems in particular, we may instead develop
an FPGA implementation of the RadioML SNN and leave the quantization as a further
extension to the project for teams later on.

Owen’s main focus will be the implementation of the SNN in PyTorch using the DCLL
library while Simon will work on the quantization of SNNs using Brevitas. We recognize

5



that there is some uncertainty around the areas with the most time-consuming challenges
for the project. Therefore, this division is tentative and we will stay in regular contact
throughout the project to combine our efforts in overcoming the main challenges.

6 Project Development

Software Components

Development for this project is mostly software-based. These are the main software
components that we will use:

• dcll, a Python library built on top of PyTorch implementing spiking neural net-
works and the DECOLLE learning rule

• Brevitas, a Python library based on PyTorch for quantization-aware training of
neural networks

• Vivado HLS, a software package for high level synthesis and simulation of hardware
designs for FPGAs

Owen will focus more on the adaptation of the dcll library, while Simon will be working
with Brevitas. Nevertheless, since many of the software components are related, we will
both be involved with all major parts of the project.

Resources

The training of neural networks can be computationally very expensive and works best
on GPU clusters maintained for this purpose. For this project we will have access to the
GPU cluster run by the university.

The codebase will be maintained on a shared GitHub repository to allow for effective
collaboration and version control. Documentation for our codebase will be maintained
using README files in markdown format which allows us to integrate code and docu-
mentation effectively within the same repository.

Additionally, a project website will be created containing a project description and links
to the codebase. Reports documenting our project results will also be published on the
project website.

6



7 Schedule

In this section we outline the schedule for the project. Table 1 provides a summary,
while a more detailed description can be found below.

Week Type Description

4 Milestone Train SNN (DCLL lib) with MNIST dataset Simon

Milestone Preprocess and load RadioML dataset for SNN Owen

5 Milestone Get familiar with Brevitas library Simon

Milestone Get familiar with the DCLL codebase Owen

6 Milestone Extend Brevitas for usage with SNNs from dcll library Simon

Milestone Adapt SNN for RadioML using DCLL PyTorch library Owen

7 Deliverable Hyperparameter tuning of SNN for RadioML Simon

Deliverable Hyperparameter tuning of SNN for RadioML Owen

8 Milestone Adapt RadioML SNN for quantization in Brevitas Simon

Milestone Tuning of architecture parameters for RadioML SNN Owen

9 Deliverable Optimize quantized version of RadioML SNN Simon

Deliverable Optimize quantized version of RadioML SNN Owen

10 Deliverable Final report and video (focus: quantization) Simon

Deliverable Final report and video (focus: SNN implementation) Owen

Table 1: Summary of milestone/deliverable schedule

Week 4

Simon:

Description: Train SNN (DCLL lib) with MNIST dataset.

Completion Criteria: Have an SNN network that can be run on the MNIST dataset
on the GPU cluster.

7



Owen:

Description: Preprocess and load RadioML dataset for SNN.

Completion Criteria: Have the RadioML data on the GPU cluster in a form that
can be fed to the SNN.

Week 5

Simon:

Description: Get familiar with Brevitas library.

Completion Criteria: Written report including a description of which functionality
Brevitas offers, how the codebase of Brevitas is organized,
how it is used for regular neural networks and outline on
where extensions for spiking neural networks will have to be
made.

Owen:

Description: Get familiar with the DCLL codebase, determine which
parts of the code will need to be changed in order to create
a VGG-like SNN architecture using DCLL modules.

Completion Criteria: Written report which includes a high-level overview of the
different parts of the code and a description of which specific
files and functions will need to be changed or utilized in order
to define a VGG-like architecture for use with RadioML.

Week 6

Simon:

Description: Extend Brevitas for usage with spiking neural networks from
dcll library.

Completion Criteria: Have a trained quantized version of the MNIST network for
different bit sizes (16-, 8- and 4-bit) and report on accuracy
achieved.

8



Owen:

Description: Adapt SNN for RadioML using DCLL PyTorch library.

Completion Criteria: Have a first SNN modeled after VGG that can be trained on
RadioML data (ignoring actual performance at this point).

Week 7 - Deliverable

Owen & Simon:

Description: Hyperparameter tuning of SNN for RadioML

Explore different versions for hyperparameters focusing on
learning rate, learning rate decay schedule, optimizers, mo-
mentum, batch size, etc. to optimize achieved accuracy of
the network.

Completion Criteria: Classify RadioML data by modulation with at least, say,
60% accuracy on the test set (which corresponds to the worst
performance reported in the previous work).

Deliver: Report on architecture, implementation and hyperparame-
ters for the model and discuss resulting accuracy.

Week 8

Simon:

Description: Adapt RadioML SNN for quantization in Brevitas.

Completion Criteria: Have a trained quantized version of RadioML SNN in Bre-
vitas (without focusing on accuracy at this point).

Owen:

Description: Tuning of architecture parameters for RadioML SNN

Hyperparameter tuning can be a very time-consuming and
tedious process. Therefore, we schedule this week to con-
tinue experimentation, focusing on modifications and opti-
mizations of the model architecture.

Completion Criteria: Have optimized RadioML SNN with highest achieved accu-
racy, update report with results.

9



Week 9 - Deliverable

Owen & Simon:

Description: Optimize quantized version of RadioML SNN.

Experiment with the Brevitas model for RadioML to reduce
model size while maintaining high accuracy.

Completion Criteria: Have optimized quantized RadioML SNN with highest
achieved accuracy.

Deliver: Report on architecture, implementation and hyperparame-
ters for quantized RadioML SNN.

Week 10 - Deliverable

Owen & Simon:

Description: Final report and video

Completion Criteria: Submit final report and video addressing project progress,
challenges, solutions and results.

References

[1] Stephen Tridgell, David Boland1, Philip H.W. Leong, Ryan Kastner, Alireza Kho-
damoradi, and Siddhartha. Real-time automatic modulation classification using rf-
soc. In RAW 2020.

[2] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for
deep continuous local learning. CoRR, abs/1811.10766, 2018.

[3] A. Tsakmalis, S. Chatzinotas, and B. Ottersten. Modulation and coding classification
for adaptive power control in 5g cognitive communications. In 2014 IEEE 15th
International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), pages 234–238, 2014.

10


	Overview
	Approach
	Project Objectives
	Feasibility and Risks
	Group Management
	Project Development
	Schedule

