IoT Neural Networks: Linear Integrate & Fire

Simon Kaufmann, Owen Jow

Software Defined Radio

Modulation

Classification

Traditional Neural Net (VGG)

Implemented on FPGA

CHALLENGES

- FPGAs have storage and bandwidth limitations
 - Difficult to port large models with heavy I/O requirements
 - Want more computationally-efficient models

APPROACH

• Spiking neural networks (SNNs)

- Inspired by biological neurons, brain...
- Event-driven, so less computationally expensive
- Linear Integrate and Fire Neurons
- Train using "Deep Continuous Local Learning"
 - Weight changes computed locally

NEXT STEPS

- Implement DECOLLE SNN method and evaluate it on RadioML dataset
- Implement quantization for FPGA using Brevitas and evaluate effect on results

