
IoT Linear Integrate & Fire

Final Report

Simon Kaufmann
sikaufma@ucsd.edu

Owen Jow
owen@eng.ucsd.edu

June 2020

Contents

1 Abstract 1

2 Introduction 2

3 Technical Material 3
3.1 Spiking Neural Networks and DCLL . 3
3.2 RadioML . 4
3.3 Brevitas . 5
3.4 Tuning of SNN for RadioML network . 5
3.5 Proposed Architecture and Results . 5
3.6 Adapting DCLL for Brevitas . 6

3.6.1 Static Parameters . 6
3.6.2 Runtime Parameters . 7

3.7 Evaluating Quantized SNN for RadioML . 7
3.8 Proposed Quantized Architecture and Results . 8

4 Conclusion 8

5 Milestones 10

1 Abstract

Due to the growing need for communication services to share a limited frequency spectrum, the
ability to classify signals by modulation has risen in importance. At the same time, the desir-
ability of small, low-cost communication devices means that efficiency of the solution is almost
as important as efficacy. With this in mind, our method leverages spiking neural networks (an
emerging event-based variant of traditional neural networks) to perform modulation classifica-
tion more efficiently than previous approaches. We train a model using deep continuous local
learning, quantize the parameters, and validate our approach on the RadioML dataset, a pub-
licly available collection of I/Q radio signals. Using this method, we achieve a peak accuracy of
56% with 955K network parameters. We also propose a quantized model with 8-bit precision for
static parameters and 24-bit precision for runtime parameters, where the quantization accounts
for a drop in accuracy of around 1.5%. These results represent a first step toward an efficient,
event-driven solution for signal classification.

1

2 Introduction

Radio communication plays an important role in modern-day life and shapes the way people
are able to communicate with each other through mobile devices. A growing number of com-
munication services (like the 5G mobile phone network) need to share a very limited frequency
spectrum. The ability to share the same frequency range for different services is thus very useful,
but requires being able to classify and recognise received radio signals by the service they belong
to. To achieve this, our project uses spiking neural networks in conjunction with the RadioML
dataset for training and evaluation.

The RadioML dataset [1] is a publicly available dataset of radio signals of 24 different modu-
lation classes and 26 different signal-to-noise ratios. Different deep learning architectures have
previously been used to create models for classifying RadioML data [2] and have achieved a
classification accuracy of up to 95% on data samples with high signal-to-noise ratios (close to 30
dB).

Spiking neural networks are event-based neural networks based on biological neurons. They
receive input in form of discrete events (spikes) which cause the internal neuron state to change
(membrane potential). Once the internal state of individual neurons reaches a certain threshold,
the neurons themselves cause further events (spikes) to be forwarded to connected neurons.

While SNNs are considered relatively hardware-friendly and allow for energy-efficient imple-
mentation on low-cost devices, they generally achieve lower accuracy than regular neural net-
works (convolutional networks, etc.) as per [3]. Thus, when considering SNNs, and especially
when first seeing their associated classification accuracies, it is important to keep in mind those
aforementioned advantages – that they can help produce lightweight, low-power and low-cost
applications.

The goal for this project is to implement and optimize a spiking neural network for modulation
classification on the RadioML dataset and to quantize the SNN in order to provide an efficient
version that can in the future be implemented on an FPGA.

For the quantization we use a sofware package called Brevitas which supports quantization-aware
training of neural networks. We adapted Brevitas to work together with the DCLL library for
creating SNNs.

An overview of the used software parts is shown below:

Figure 1: Overview of Software Parts for the Project

2

The contributions of our work are as follows:

• We have made, to the best of our knowledge, the first attempt at applying spiking neural
networks to the task of modulation classification for radio signals.

• We have also optimized different parts of our model (state and weights) using quantization
methods and adapted the DCLL library for compatibility with Brevitas.

• Since our accuracy is still slightly below that of the worst-performing traditional networks
from previous papers, the main advantage of our method is the fact that it is event-based
and can be run more efficiently on specialized neuromorphic hardware.

3 Technical Material

3.1 Spiking Neural Networks and DCLL

A spiking neural network (SNN) is a variant of a neural network that utilizes spike-based commu-
nication over continuous time in accordance with actual biological neuron models. In this way,
it can be seen as a special case of a binary, recurrent neural network. However, while SNNs use
a more complex and powerful neuron model and are naturally equipped to capture temporal dy-
namics, they suffer from very underdeveloped training methods in relation to traditional neural
networks. In particular, they are difficult to train because spikes over time are non-differentiable,
and the biological neuron model decrees that computation should remain local to each neuron,
meaning we cannot simply backpropagate through time (backpropagation through time tends to
be prohibitively expensive with regard to memory anyway).

Fortunately, one recent paper ([4]) provides a convenient way to implement and train spiking
neural networks using a local layer-wise gradients which are only backpropagated within the
same layer and time step. Their method is called ”deep continous local learning,” or DCLL for
short. In DCLL, each layer is itself trained to solve the classification task (although the spiking
output is still passed to the next layer), which ensures that each layer learns useful features for
solving the relevant task.

In the DCLL formulation of a spiking neural network, each neuron maintains extra state vari-
ables that are propagated forward in time. Because this information is sufficient for computing
gradients at the next time step, DCLL allows for memory-efficient training.

As per [4] and the associated public codebase, the dynamics of the spiking neural network under
DCLL can be described by the following equations:

Ql(t+ ∆t) = βQl(t) +
1

1 − β
Sl−1(t)

P l(t+ ∆t) = αP l(t) +
1

1 − α
Ql(t)

Rl(t+ ∆t) = γRl(t) − (1 − γ)Sl(t)

U l(t+ ∆t) = conv(P l(t+ ∆t)) +Rl(t+ ∆t)

Sl(t+ ∆t) = 1 if U l(t+ ∆t) ≥ 0 else 0

where l denotes the layer, t denotes the time step, Sl is the output spike image for layer l, and
P,Q,R,U are synaptic, refractory, and membrane-related state variables. ∆t denotes the length
of the time step. Note that the values of P l, Ql, Rl, and Sl are each passed to the next time
step in the same layer, so these variables encapsulate the “state” of a neuron in a layer. One

3

important point is that although these state variables are passed to the next time step, their
gradients neither need nor will be allowed to propagate backward through time (resulting in a
critical savings in memory, as we do not need to keep track of the entire computation graph for
multiple time steps).

Figure 2: Simplified view of a convolutional DCLL spiking layer.

3.2 RadioML

We train and evaluate our method on radio signals from the RadioML dataset. This dataset
consists of 2.5 million radio signals formatted as I/Q samples over 1024 time steps each. Each
signal is labeled with its modulation class (one of 24) and SNR (one of 26, with the minimum
SNR being -20 dB and the maximum SNR being +30 dB).

Although previous deep learning approaches have typically fed the entire 1024-length signal to
the network at once (as a 1D signal with two channels), we would like to provide our spiking
neural network with a spiking input for each time step. Therefore, we transform each I/Q sample
(a tuple of two numbers representing the real and imaginary components of the signal at a time
step) into an image by plotting the I/Q sample on the I/Q plane and discretizing the plane over
the range [−1, 1] in each dimension. This way, one could imagine each data point in the signal
arriving one after another (as events) to the SNN, which would provide class predictions in real
time.

Figure 3: A visualization of image discretizations for I/Q samples.

4

3.3 Brevitas

Brevitas is a machine learning library based on PyTorch for quantization-aware training. While
conservative quantization (keeping the bit-width relatively high) may be possible retrospectively
after the training process without too much loss of accuracy, quantization for very low bit-width
(e.g. 2- and 4-bit) can often achieve better results if the model is trained using the quantized
forward pass. Brevitas assists with adjusting PyTorch models and optimize them for used in
scenarios which require quantization.

For this purpose, Brevitas defines various classes that can be used similarly to the conventional
PyTorch classes, e.g. QuantConv2D and QuantLinear. Each of these classes support detailed
settings to specify the nature of the quantization, e.g. the minimum and maximum bit-width,
the method of converting numbers to integers and scaling factor, whether or not rescaling will
be applied etc.

Brevitas defines a QuantTensor which is used as the quantized version of regular Tensor in
PyTorch. It is implemented as a named tuple containing three values: the actual tensor, the
scale factor and the bit width. The actual tensor corresponds to the regular PyTorch tensor
object. The values in this tensor are still floating point numbers, but they will only be set to
values that correspond to the correct quantized grid—essentially this tensor contains the integer
values multiplied by the scale factor. The second tensor in the tuple contains only one element
which is the scale factor that was applied to the integer values and the third tensor contains the
bit width that was used for the QuantTensor, for example if the bit width is 2, there are only
four values allowed in total in the first tensor. What values are allowed is determined by the
scale factor.

3.4 Tuning of SNN for RadioML network

We tried a lot of different hyperparameter settings in order to train the SNN on RadioML
data. Dimensions that we varied included, among other things: the resolution of the discretized
I/Q images, the ranges of the dicsretized I/Q images, the regularization weights, the network
architecture (number of filters in each layer, severity of pooling, kernel sizes, different padding
sizes and types, number of convolutional layers, number of dense layers, spiking versus non-
spiking dense layers), the constants for the spiking neuron dynamics, the activation functions,
dropout probabilities, additional dropout layers, different sampling weights for different classes
and SNRs, different SNRs used for training, different subsamplings of the data, continuing the
training of pre-trained networks with different settings, different data preprocessing (e.g. wider
spikes, “gamma correction” for different and nonlinear discretizations of the [-1, 1] range in order
to put more pixels in the parts of the range where there were more samples, difference images –
including an extra event for spikes being removed from the previous time step), increased burn-
in times (where training updates don’t happen), different fixed signal durations during training,
randomized burn-in times and signal durations during training, and learning rates (including
different learning rates for each layer).

3.5 Proposed Architecture and Results

Ultimately, our best-performing architecture ended up being a three-layer network with 32 7× 7
learned convolution kernels in each layer (and length-3 zero padding on each side), followed
by a fully-connected layer and a softmax activation to reduce the intermediate results to class
probabilities. Each layer was, of course, a spiking DCLL layer wrapped around these base layer
types.

5

Figure 4: High-level overview of network architecture.

Although we spent a lot of time tuning hyperparameters for the SNN, we found it difficult to
move past mid-50% classification accuracies on the test set. For full 24-class classification, the
peak per-SNR accuracy of our SNN model was 56%.

Figure 5: Per-layer classification accuracies at different SNRs.

3.6 Adapting DCLL for Brevitas

3.6.1 Static Parameters

To quantize the weights of the Spiking Neural Network, we extended the Conv2dDCLLlayer class
to a new class QuantConv2dDCLLlayer. This is similar to the way the QuantConv2D layer is built
on top of Conv2D in the Brevitas library.

The QuantConv2dDCLLlayer uses the same weight tensor self.weight to store the precise float-
ing point weights during the training process. However, the forward pass is modified so that the
precise weights are quantized to a fixed integer bit width before being used to process the input.
Similarly to the implementation of QuantConv2D, we used a WeightQuantProxy object for the

6

purpose of quantizing the weights. Throughout the training process Brevitas will maintain one
single scale factor per layer which is applied to the integer values of the quantized weights and is
rescaled automatically during the training process to allow the weights to make best use of the
bit width available.

3.6.2 Runtime Parameters

In SNNs it is important to keep track of the internal neuron state (membrane potential) through-
out time. The next state value is calculated from a function of input, weights and previous state.
To quantize the state variables, it doesn’t make sense to use dynamic scaling during the training
process (as was used for weight quantization) since the state constantly changes during runtime
and we need a permanent scale value for the device that the SNN is going to be run on.

To determine such a scale factor the expected range has been measured experimentally by ap-
plying the test set on the network and storing maximum and minimum state value throughout
computation. A QuantIdentity function is then used in Brevitas to fit integer variables of a
certain bit width into an interval of real numbers (between 0 and the maximum value of the state
determined experimentally plus an added safety interval to allow the state higher values then
the highest value measured in experiments). The Brevitas QuantIdentity function will, given
the maximum value, automatically determine the scale factor applied to the raw integer values
in order to get the state value adjusted to the desired range.

This is implemented as separate class QuantContinuousConv2DState which is a built on top of
and as replacement for QuantContinuousConv2D. While the latter class only supports weight
quantization, the former can be used for both state and weight quantization.

3.7 Evaluating Quantized SNN for RadioML

We evaluated the quantized model on different bit widths to see how the reduced number precision
would impact the overall model performance. Interestingly, the model is relatively tolerant to
weight quantization. Even aggressive quantization of the model weights to 2-bit integers does
not lead to a drop in accuracy of more than -5%.

The internal neuron state is much more sensitive to lower precisions. Quantizing the state
variables to 12-bit integers already causes the accuracy to be halved compared to the non-
quantized model.

44.92%43.95%41.60%39.84%

0.00%

25.00%

50.00%

75.00%

100.00%

Floating Point8-bit4-bit2-bit

Accuracy for Model with Quantized Weights

Figure 6: Model accuracy for quantized weights

7

43.95%43.55%
39.65%

22.66%

11.13%
0.00%

25.00%

50.00%

75.00%

100.00%

Floating Point24 bit16 bit12 bit8 bit

Accuracy for Model with Quantized State (Weights = 8-bit)

Figure 7: Model accuracy for quantized state

3.8 Proposed Quantized Architecture and Results

Based on the evaluation results we chose a weight quantization of 8-bit and a state quantization
of 24-bit. This leads to a memory reduction for weights by 75% for the neuron state of 25%
compared to a model using floating point parameters while reducing the classification accuracy
on the dataset by 1.37%.

The following image is an illustration of a quantized DCLL layer. The network in total again
consists of three convolutional DCLL layers followed by a fully-connected layer (non-spiking)
which connects to the membrane potential of the neurons of the last layer.

Figure 8: Architecture quantized layer

4 Conclusion

In this project, we conducted, to our knowledge, the first foray into using spiking neural networks
for automatic modulation classification. Namely, we integrated DCLL SNNs, RadioML, and
Brevitas into a multi-component system capable of classifying radio signals using quantized
spiking neural networks.

Unfortunately, our results remained rather subpar in comparison to state-of-the-art traditional
networks, despite all of our efforts to tune things for the better. We suspect that this may be due
to the limitations of the training method that we are using for spiking networks, or the subpar
regularization that we are applying (as the network does much better on the training set than it
does on the test set).

8

Nevertheless, as spiking neural networks and event-based communication grow as a field of in-
terest for the AI/ML community (for example, event-based cameras are gaining traction in com-
putational photography, meaning visual domains may soon have a greater use for spiking-type
networks), new training methods will be developed that may help close the gap between SNNs
and residual networks on modulation classification. Furthermore, we consider it a promising sign
that our network is able to achieve near-perfect accuracy on the training dataset, showing that
it likely possesses the necessary representational capacity to solve the problem and simply needs
to be regularized in some better and potentially SNN-specific way.

Finally, one (motivating) advantage that SNNs have over their traditional counterparts is effi-
ciency; with the adoption of specialized and increasingly prevalent neuromorphic hardware, SNNs
can be made to only process the “events” and thus operate much more efficiently than most pre-
vious methods. Over time, as new methods drive the accuracy for SNN-based 24-modulation
classification upward from our best result of 56%, SNNs will likely become increasingly attrac-
tive as the accuracy gap lessens and the efficacy-efficiency tradeoff shifts in favor of SNNs on
neuromorphic hardware.

9

5 Milestones

In this section we include the original schedule for the project including the proposed milestones
and address progress made throughout the project and how the milestones were completed.

Week Type Description

4 Milestone Train SNN (DCLL lib) with MNIST dataset Simon

Milestone Preprocess and load RadioML dataset for SNN Owen

5 Milestone Get familiar with Brevitas library Simon

Milestone Get familiar with the DCLL codebase Owen

6 Milestone Extend Brevitas for usage with SNNs from dcll library Simon

Milestone Adapt SNN for RadioML using DCLL PyTorch library Owen

7 Deliverable Hyperparameter tuning of SNN for RadioML Simon

Deliverable Hyperparameter tuning of SNN for RadioML Owen

8 Milestone Adapt RadioML SNN for quantization in Brevitas Simon

Milestone Tuning of architecture parameters for RadioML SNN Owen

9 Deliverable Optimize quantized version of RadioML SNN Simon

Deliverable Optimize quantized version of RadioML SNN Owen

10 Deliverable Final report and video (focus: quantization) Simon

Deliverable Final report and video (focus: SNN implementation) Owen

Table 1: Summary of milestone/deliverable schedule

Week 4

Simon:

Description: Train SNN (DCLL lib) with MNIST dataset.

Completion Criteria: Have an SNN network that can be run on the MNIST dataset on
the GPU cluster.

Completion:

• Configured job on GPU cluster to work with DCLL library

– Issue faced: Allocate RAM to allow training process to proceed properly without
crashing while keeping utilization high

• Trained the default MNIST SNN on the cluster, peak accuracy: 99.02%

10

Training Epochs

Ac
cu

ra
cy

0.00%

25.00%

50.00%

75.00%

100.00%

0 100 200 300 400 500

Layer 1 Output

Layer 2 Output

Final Output

Accuracy MNIST Model

Figure 9: Accuracy throughout training process for default MNIST model

Owen:

Description: Preprocess and load RadioML dataset for SNN.

Completion Criteria: Have the RadioML data on the GPU cluster in a form that can
be fed to the SNN.

Completion:

See the code on GitHub (along with the file histories) which will show that a version of RadioML
loading and preprocessing was implemented in Week 4, and a better version is implemented
now.

Currently, we split the RadioML data into (per-class, per-SNR) HDF5 files, load the data from
there, and convert the time-series data into spike trains by transforming the signal input at each
time step into a spike at the nearest binned spatial location on the I/Q plane. The relevant
files are data/load radio ml.py (note: the previous text is a link), which does the initial HDF5
loading, and data/utils.py, which performs the conversion to spike trains.

Week 5

Simon:

Description: Get familiar with Brevitas library.

Completion Criteria: Written report including a description of which functionality Bre-
vitas offers, how the codebase of Brevitas is organized, how it is
used for regular neural networks and outline on where extensions
for spiking neural networks will have to be made.

Completion:

Refer to the description of Brevitas in section 3.3.

Important parts of the Brevitas code for this project are located in the following directories:

• nn: Defines higher level classes like convolutional and linear layers, activation function,
batch normalisations with quantization support

• proxy: Useful quite high-level structures for quantization e.g. to track weights and perform
scaled quantization

11

https://github.com/ohjay/snn-modulation-classification/blob/master/data/load_radio_ml.py
https://github.com/ohjay/snn-modulation-classification/blob/master/data/utils.py

• core: Contains the low-level part of Brevitas defining a TensorQuant structure and In-
tQuant classes that can e.g. quantize floating point values into the correct integer range
given certain bit settings and a scale factor

For the weight quantization, we will look at the implementation for the already provided QuantConv2D,
a regular convolutional layer that builds upon Conv2D and takes the precise weights of the Conv2D
part and quantizes them during every forward pass. The implementation for the DCLL convo-
lutional layer will work in similar fashion using the WeightQuantProxy object.

Owen:

Description: Get familiar with the DCLL codebase, determine which parts of
the code will need to be changed in order to create a VGG-like
SNN architecture using DCLL modules.

Completion Criteria: Written report which includes a high-level overview of the different
parts of the code and a description of which specific files and
functions will need to be changed or utilized in order to define a
VGG-like architecture for use with RadioML.

Completion:

Following is a written report, which could be expanded to a separate page upon request. After the
refactor/cleanup, the code is split into four different folders: data, dcll, networks, and scripts.
data includes files that relate to the loading of specific datasets (currently the supported options
are MNIST and RadioML) and preprocessing them – converting them to spike trains, for example.
dcll includes files (largely unedited from those of the original authors) which implement the
Deep Continuous Local Learning layers and define auxiliary experimental utilities. networks

includes a Python file which implements general architecture-building, and YAML files that
specify, in a readable format, the architectures we use for our specific use cases (MNIST and
RadioML classification). scripts contains runnable training and testing scripts for MNIST and
RadioML. Finally, in the root directory, there is the train.py file which serves as an entry
point for training. It sets things up according to command-line arguments and then runs a
training/evaluation loop.

In order to define a VGG-like architecture for use with RadioML, we will need to change the
YAML network specification in networks/radio ml conv.yaml. And that should be it, since the
code has been refactored to support generalized YAML-based network building. For hyperpa-
rameter tuning, the hope is that we will mainly just need to modify the command-line arguments
in the launch scripts.

Week 6

Simon:

Description: Extend Brevitas for usage with spiking neural networks from dcll
library.

Completion Criteria: Have a trained quantized version of the MNIST network for differ-
ent bit sizes (16-, 8- and 4-bit) and report on accuracy achieved.

Completion:

The changes made to combine DCLL library code with the Brevitas framework is described in
section 3.6 of this report.

12

The weight quantization for the MNIST model achieved the following results:

Training Epochs

Ac
cu

ra
cy

0.00%

25.00%

50.00%

75.00%

100.00%

0 200 400 600

Integer 8-bit

Integer 4-bit

Integer 2-bit

Floating Point

Accuracy MNIST Model (Weight Quantization)

Figure 10: Accuracy for MNIST SNN with quantized weights

A summary of the results achieved using runtime quantization is shown below:

21.60%

60.00%

97.50% 98.05%

eps0 Bit Width

Ac
cu

ra
cy

0.00%

25.00%

50.00%

75.00%

100.00%

4 8 16 Floating Point

Accuracies by eps0 quantization (eps1: 16-bit INT, weights: 8-bit)

46.50%

60.00%

98.05%

eps1 Bit Width

Ac
cu

ra
cy

0.00%

25.00%

50.00%

75.00%

100.00%

8 16 Floating Point

Accuracies by eps1 quantization (eps0: 8-bit INT, weights: 8-
bit)

Figure 11: Accuracy for different runtime quantization

Owen:

Description: Adapt SNN for RadioML using DCLL PyTorch library.

Completion Criteria: Have a first SNN modeled after VGG that can be trained on Ra-
dioML data (ignoring actual performance at this point).

Completion: By checking the history of networks/radio ml conv.yaml (the
previous text is a link), you can see the specifications for the VGG-
inspired networks that we set up. Furthermore, you can browse
the different states of the codebase over the last few weeks, where
we were able to train an SNN on RadioML data in almost all
of them (pretty much every commit after week 4 should support
SNN RadioML training – just run scripts/train radio ml.sh

at any point in the history where the script exists).

13

https://github.com/ohjay/snn-modulation-classification/blob/master/networks/radio_ml_conv.yaml

Figure 12: An example of the training process on RadioML for each of three convolutional
DECOLLE SNN layers. The plots depict mean validation accuracy over time.

Week 7 - Deliverable

Owen & Simon:

Description: Hyperparameter tuning of SNN for RadioML

Explore different versions for hyperparameters focusing on learn-
ing rate, learning rate decay schedule, optimizers, momentum,
batch size, etc. to optimize achieved accuracy of the network.

Completion Criteria: Classify RadioML data by modulation with at least, say, 60%
accuracy on the test set (which corresponds to the worst perfor-
mance reported in the previous work).

Deliver: Report on architecture, implementation and hyperparameters for
the model and discuss resulting accuracy.

Completion: For results of the optimization process, refer to “Tuning of SNN
for RadioML network” section of the report.

Week 8

Simon:

Description: Adapt RadioML SNN for quantization in Brevitas.

Completion Criteria: Have a trained quantized version of RadioML SNN in Brevitas
(without focusing on accuracy at this point).

Completion:

For this milestone, the SNN for RadioML from week 7 was adjusted to work with classes
QuantConvNetwork, QuantConv2dDCLLlayer. Training of quantized weights worked without any
further problems. For the state quantization, the accuracy initially dropped significantly. This
was due to the maximum state value being poorly calibrated for the new type of data. After
determining the new maximum value and readjusting the quantized state variable, the drop in
accuracy was comparable to the experiments run on MNIST data in week 6.

14

Owen:

Description: Tuning of architecture parameters for RadioML SNN

Hyperparameter tuning can be a very time-consuming and tedious
process. Therefore, we schedule this week to continue experimen-
tation, focusing on modifications and optimizations of the model
architecture.

Completion Criteria: Have optimized RadioML SNN with highest achieved accuracy,
update report with results.

Completion:

We did continue to tune hyperparameters and re-train networks throughout these weeks (for
more details, see “Tuning of SNN for RadioML network” in the Technical Material section of
this report). However, despite our best efforts, the gains in accuracy were marginal (from around
49% to 56%).

Week 9 - Deliverable

Owen & Simon:

Description: Optimize quantized version of RadioML SNN.

Experiment with the Brevitas model for RadioML to reduce model
size while maintaining high accuracy.

Completion Criteria: Have optimized quantized RadioML SNN with highest achieved
accuracy.

Deliver: Report on architecture, implementation and hyperparameters for
quantized RadioML SNN.

Completion:

The network was trained and evaluated using different bit widths for weights and neuron state
to optimize the performance and find a trade-off between accuracy and resource consumption of
the network.

44.92%43.95%41.60%39.84%

0.00%

25.00%

50.00%

75.00%

100.00%

Floating Point8-bit4-bit2-bit

Accuracy for Model with Quantized Weights

43.95%43.55%
39.65%

22.66%

11.13%
0.00%

25.00%

50.00%

75.00%

100.00%

Floating Point24 bit16 bit12 bit8 bit

Accuracy for Model with Quantized State (Weights = 8-bit)

Figure 13: Accuracy for different quantization bit widths

For the proposed network we chose a weight quantization of 8-bit and a state quantization of 24-
bit. This leads to a memory reduction for weights by 75% for the neuron state of 25% compared

15

to a model using floating point parameters while reducing the classification accuracy on the
dataset by 1.37%.

Week 10 - Deliverable

Owen & Simon:

Description: Final report and video

Completion Criteria: Submit final report and video addressing project progress, chal-
lenges, solutions and results.

Completion: Final report submitted and video introduction to the project up-
loaded to Youtube. Video and documentation can be found on
the project webpage https://iot-lif.github.io/.

References

[1] T. J. O’Shea, T. Roy, and T. C. Clancy. Over-the-air deep learning based radio signal
classification. IEEE Journal of Selected Topics in Signal Processing, 12(1):168–179, 2018.

[2] Stephen Tridgell, David Boland1, Philip H.W. Leong, Ryan Kastner, Alireza Khodamoradi,
and Siddhartha. Real-time automatic modulation classification using rfsoc. In RAW 2020.

[3] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée Masquelier,
and Anthony S. Maida. Deep learning in spiking neural networks. CoRR, abs/1804.08150,
2018.

[4] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep
continuous local learning. CoRR, abs/1811.10766, 2018.

[5] A. Tsakmalis, S. Chatzinotas, and B. Ottersten. Modulation and coding classification for
adaptive power control in 5g cognitive communications. In 2014 IEEE 15th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 234–
238, 2014.

16

https://iot-lif.github.io/

	Abstract
	Introduction
	Technical Material
	Spiking Neural Networks and DCLL
	RadioML
	Brevitas
	Tuning of SNN for RadioML network
	Proposed Architecture and Results
	Adapting DCLL for Brevitas
	Static Parameters
	Runtime Parameters

	Evaluating Quantized SNN for RadioML
	Proposed Quantized Architecture and Results

	Conclusion
	Milestones

