loT Neural Networks:
Linear Integrate & Fire

Simon Kaufmann, Owen Jow

Introduction

“Use Spiking Neural Networks for Modulation Classification”

Modulation Goals

1. Train a Spiking Neural Network Model
for RadioML dataset

2. Quantize the Model to save
computation power and memory

Overview

1) Used DCLL to create and
train a Spiking Neural

Spiking Neural
Network (SNN) for RadioML

Networks I

Tuned:
- Hyperparameters

- Network Architecture
Quantization
2) Connected Brevitas and

DCLL Library to train

quantized SNN
Machine Lee.lrning 'S PyTorch Ex;.)eri.mented with:
Library - Bit widths

- Parameters to quantize

RadioML Dataset

e RadioML dataset:

Radio signal represented y: 1024 samples y
as list of number pairs
H 421 38|33 25]|14] 0.3 0.3]108]1] 13| 24] 3.0
(I/Q part of signal) I . . .
Q 1522 [33|39]55]6.0 03| 04]|02]02]02

e For SNN input:
- Create list of 2D images I \

- Axes represent 1/Q part ‘ .

- Number pairs are marked Q
as spikes in images Time t

V

SNN Model Architecture

Model architecture:
- 3 convolutional SNN layers
- 1 traditional linear layer

Compute output for each of
1024 input timesteps

Training:

- Problem: spikes not
differentiable

- Use Deep Continuous Local
Learning (DCLL) which trains
local classifier at every layer
using approximated gradient

Time t

Spiking Neural Network Output
Layer
Fully-
Neurons Neurons Neurons Connected
Layer 1 Layer 2 Layer 3 Layer

* Neurons keep state (‘charge') between time steps
* Neurons cause spike ('fire') when state higher than threshold

* Final output is majority vote of output for time steps

Class 10

SNN Layer

Architecture of SNN layer:

Input SNN Layer Output
Image Images
Weights
Nsetlg:gn = Threshold m . -
Add to state Multiply Generate Spikes

(from last timestep) (Convolution)

Results

50-55% accuracy on higher signal-to-noise ratios
70-75% accuracy with 10 classes instead of 24

layer 1
0.5 { Wmm layer 2
layer 3
0.4
>
@ 0.3
>
v
e
0.2
0.1 A
0.0 - T T T o o
8 12 16 20 24 28 Confusion matrix

Signal-to-noise ratio

Quantization

Quantization
- Reduce Number of Bits . 1T T]

- To Save Memory Illﬁggg SNN Layer Ionlll;glelg
- And Simplify Computation e "NT 8-bit

Weights INT 1-bit
Quantize INT 1'?“ FPI:;;:; ::bnt ® i
- Weights _ S = Threshold -
- Neuron State Add to state Multiply Geperate Spikes

. . (from last timestep) (Convolution)
- Input (already spike/no spike)
FP ... Floating Point (32-bit)

DCLL - Brevitas
- Create Layer QuantConv2dDCLL
- Substitute for Conv2dDCLL

Results Quantization

Quantized Weights Quantized Weights and State
Tradeoff: Tradeoff:
INT 8-bit Weights -1% accuracy -75% Memory (Weights) INT 24-bit State -0.4% accuracy -25% Memory (State)
Accuracy for Model with Quantized Weights Accuracy for Model with Quantized State (Weights = 8-bit)
100.00% 100.00%
75.00% 75.00%
50.00% 50.00%

25.00% 25.00%

0.00% 0.00%

2-bit 4-bit 8-bit Floating Point 8 bit 12 bit 16 bit 24 bit Floating Point

Conclusion

Achievements:

e Trained an SNN model for modulation classification using RadioML dataset
and Deep Continuous Local Learning (DCLL)

e Connected DCLL Library with Brevitas for Quantization Aware Training

e Proposed quantized version of the network for efficient implementation on

FPGA
Issues / Future Work:

e Network doesn’t generalize well (low accuracy on test set)
e Explore different training methods (e.g. Genetic Algorithms)

